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The interfacial free energy of a two-dimensional Ising model is calculated by 
using various renormalization group schemes. The results obtained are quan- 
titatively consistent with known exact results. In addition, a general discussion 
of various drawbacks within different renormalization group approximations is 
given. The best result are obtained with the 4 • 4 finite cluster approximation, 
while the Migdal-Kadanoff approximation seems to be inherently unsuitable for 
calculation of interfacial properties. 
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1. I N T R O D U C T I O N  

Phenomena  associated with interfaces and surfaces in otherwise 
homogeneous  physical /model  systems have attracted considerable at tention 
recently. In particular, it is known that  two (or more)  coexisting phases 
may  undergo a variety of phase transitions associated with bulk, interface 
(surface), or coexistence instabilities. ~ This division reflects a widely 
accepted view that an inhomogeneous  system consists of bulk and interface 
(surface) subsystems in strong interaction/2) Consequently,  one defines 
bulk and interracial free energies, to be denoted fb  and f l ,  respectively, 
which contain all information needed for the rmodynamic  description of the 
system. Thus, studies of inhomogeneous  systems on this level of  description 
focus on the calculation of  free energies. But such calculations can often be 
difficult to perform. 

Calculat ion of  bulk free energy in various homogeneous  systems has 
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been performed in a number of ways, including phenomenological 
approaches, (3) numerical methods, (4"51 and position-space renormalization- 
group (RG) methodsJ 6~ The results obtained in such studies are believed to 
be quite accurate. On the other hand, calculations of interfacial free 
energies have not been nearly as successful. In particular, numerical 
simulations, such as the Monte Carlo method, (7'8) seem to be plagued by 
various finite-size effects,(9 l l) phenomenological approaches are inadequate 
for description of transitions such as roughening, (12) and RG methods (13~ 
are at best poorly developed in comparison with analogous bulk 
calculations. 

The purpose of the present work is to analyze various position-space 
RG techniques (~4) for the calculation of interfacial free energies. In what 
follows we shall concentrate on the Ising model of a ferromagnet with 
short-range interactions and try to develop a tractable, accurate RG 
method for calculation of the interfacial free energy. As will be shown 
below, such calculations are quite sensitive to details of the particular RG 
scheme employed and, indeed, some approaches often used in bulk 
calculations are not suitable for analogous interface problems. 

We shall concentrate on three commonly used position-space RG 
schemes: (1) cumulant expansion, (~5) (2) Migdal-Kadanoff approxi- 
mation, (16) and (3) finite-cluster approximation. ~15"~7~ These schemes have 
been successfully used in the past for calculation of bulk properties. Exten- 
sion of such schemes to calculation of interracial properties is not 
straightforward and can often lead to erroneous results. We shall discuss 
this problem as we proceed. 

For definitness, let us consider a hypercubic, d-dimensional, Ising lat- 
tice of spins S i=  __1 at each lattice site. We shall assume short-ranged, 
nearest neighbor ferromagntic interaction of strength J ( J < 0 )  between 
spins. It will be convenient to introduce dimensionless coupling constant 
K = - -J /kB T. 

Now, in order to introduce the interface into the system, we can either 
(1) introduce periodic boundary conditions in d - 1  directions and 
antiperiodic boundary conditions in one direction or (2) use the symmetry 
of the Ising bulk free energy under the change of sign of the coupling con- 
stant K and introduce a "seam" of defect couplings Kd = -K .  (18) The defect 
("seam") free energy is then precisely equal to the interfacial free energy. In 
what follows we shall use this second method to calculate the interracial 
free energy. 

For a d-dimensional system of N d spins the dimensionless bulk free 
energy density is calculated from 

fb  = lim N d lnTre /~=  lim N - d l n Z  (1) 
N ~ o t ~  N ~ o o  
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where the trace is taken over all spin configurations and the Hamiltonian 
H of the system is given by 

H = ~ KoSiS j + NaKo (2) 
i , j  

In this expression the constant term K 0 is irrelevant for critical behavior, 
but is essential for calcultion of thermodynamic quantities. Note that 
expression (1) is independent of boundary conditions and/or the presence 
of the "seam," 

The interfacial free energy density is obtained from (~9'2~ 

f~= lira N - ( d - l ) [ l n Z ( + - ) - l n Z ( + + ) ]  
N ~ o O  

(3) 

where Z( + + )  [ Z ( +  - ) ]  denotes the partition function of the system with 
periodic (antiperiodic) boundary conditions. If the interface is introduced 
into a system via a "seem" of defect bonds, then the interfacial free energy 
density is calculated from 

J)= lim N (J-t)[lnZ(K, K j = - K ) - l n Z ( K ,  Ka=K)] (4) 
N ~ o o  

In this paper we shall concentrate on the calculation of f ,  via a position- 
space RG method. We first make a few remarks that we shall need below. 
It is useful to known the behavior of f~ in various limits. In particular, we 
need the behavior o f f / i n  the limit T--*0 and T ~  T~.. It is easy to show 
that(~8,2~) 

f , . ~ - 2 K  as T ~ 0  (orK---,oo) (5) 

and (22) 

f i ~ c o n s t x ( K - K , . )  ~ as T~T~. (orK--*K~.) (6) 

where the exponent /~ is determined by Widom's scaling law from 
# = ( d -  1) v. The above forms (5) and (6) are valid for arbitrary dimension 
d of the system. The exponent # has value # = 1 (for d =  2) and # ~ 1.26 
(for d =  3). 

Calculation of the exponent # within RG follows from the behavior of 
the RG recursion relations in the vicinity of the critical point. Thus, the 
behavior (6) of f~. ultimately depends on the accuracy of bulk recursion 
relations. 

On the other hand, the low-temperature behavior (5) o f f /depends  on 
the global behavior of RG flows and is thus very sensitive to the particular 
form of RG approximation chosen in the calculation (see below). 
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After these lengthy, but necessary, preliminary remarks let us concen- 
trate on a particular renormalization procedure for calculation of fi. Sup- 
pose that we have developed an RG scheme that gives us certain recursion 
relations, i.e., the functional dependence of new (rescaled) coupling con- 
stants on those of the original system. Then, in principle we have 

K' = R(K), K*o = Ro(K, Ko) (7) 

The bulk free energy density, as defined by (1), follows from (17) 

which gives 

M 1 

f M <  ~v0] ---- 
n = 0  

I. ,,a r,-(.) ( 8 a )  fb = lim . . . .  o 
n ~ c x 2  

b d(.+,)rb[K(~), K(o.)] + b dMfb[K(M), K(o M~] (8b) 

where M is the number of renormalization iterations, b is the rescaling fac- 
tor, and rb is a constant-term contribution to the free energy, which comes 
from the integration of short-wavelength fluctuations. Note that the last 
factor in (Sb) vanishes in the limit M--* oo. 

In a similar manner, the interracial free energy density is obtained 
from 

M - I  

LEK, Ko~ = Y~ 
n = O  

b-(J-1)('+l)ri[K('),K(o')]+b-i~ I)MJ)[K(M),K(o a4)] (9) 

which, after some algebra, gives 

f~ = lira (-2K(")/b "(~- 1)) (10) 
n ~ o ~ 2  

where K I') is the nth iterate of the bulk coupling constant K. Observe that, 
since the calculation is performed for T <  Tc (or K >  Ke), all flows wil! go 
to infinity, i.e., lim, ~ ~ K ( ' /=  c~. It is clear now that if we want to obtain 
correct low-temperature behavior of f~ as given by (5) from the expression 
(10), then the low-temperature limit of the RG recursion relations must 
be (23) 

K' = b (d- I)K+ O(e -K)  (11) 

If this condition is not met, then the limit (5) will not be correctly obtained 
within the RG group. In particular, within the Migdal-Kadanoff 
approximation to the RG one can show that 

K,=b(d-~)K_O.51nb+O(e K) (12) 
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so that, as T ~  0, 

f,.,-~ - 2 K +  (ln b" b -~d 1/)/(1 - br 1)) (13) 

We have performed several versions of cumulant, (13'15~ Migdal 
Kadanoff, (14'I6) and finite-cluster r approximations to the RG equations. 
We now take them in order. 

2. C U M U L A N T  E X P A N S I O N  

We have used a first-order cumulant expansion approximation to the 
RG equations for 2 x 2, 3 x 3, and 4 x 4 basic blocks. (z4) This is illustrated 
in Fig. 1. In spite of the seeming simplicity of this approach, the first-order 
expansion turns out to be well suited for our calculation. Recursion 
relations are generally given by 

K ' =  K ~  <S)  2 (14a) 
i 

where ( S ) i  is the average of the spin on the edge of the basic block. In the 
case when we use 2 x 2 approximation ( S ) i  is given by (2s) 

( S ) i = ( e 4 K h - p ) / ( e 4 K 4 - 6 4 - e  -4K ) ( i=  1, 2) (14b) 

(a) 

2 2 1 

3 3 /~ 
i j 

ib) 

1 2 3 

i j 

Fig. 1, 

(c) 

1 2 3 4 

1 9 3 ~ i  - 

i j 

Three basic blocks used in the cumulant expansion approximation: (a) 2 x2, (b) 
3x3, and (c) 4x4 cells. 
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2' I i i I 
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0.5 1.0 1.5 2.0 2_5 

I / K  

Fig. 2. Interracial free energy for the first-order cumulant expansion with cell 2 x 2 and 
p = 4x /2 -3  (see text). (--) The exact result(181; (-.-) the result of the RG calculation. 

Similar,  but  lengthier  expressions can be wri t ten for 3 x 3 and 4 x 4 basic 
blocks.  No te  tha t  in (14b) we have used the pa rame te r  p as a var iable  
parameter ,  which enables  us to chose the pro jec t ion  rule at will. In  par-  
t icular,  if p = 2 ,  we have majo r i ty  rule. (13) In our  ca lcula t ion  we have 

chosen p = 4 x ~ -  3, since this value reproduces  the cri t ical  po in t  K~ of the 

p l ana r  Ising mode l  exactly. 
Our  results for cumulan t  expans ion  me thods  are shown in Figs. 2M. 

One can clearly see tha t  the results are quant i ta t ive ly  similar.  F o r  reasons 

2 
fi 
g •-•\ 

1 

0 L !\ , \  
0 0.5 1.0 1.5 2.0 

I / K  

1 

2.5 

Fig. 3. Interfacial free energy for the first-order cumulant expansion with cell 3 x 3 and 
majority rule projection operator. (--) The exact result(18); ( - - )  the result of the RG 
calculation. 
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f2 
K \ .  

\ . \  

= , \ \  ,, 
0.5 1.0 1.5 2.0 2.5 

I/K 

Fig. 4. Interfacial free energy for the first-order cumutant expansion with cell 4 x 4 and 
majority rule projection operator. ( - - )  The exact result118); ( - . - )  the result of the RG 
calculation. 

we do not quite understand, this simple first-order approximation yields 
good quantitative results. Our belief is that this is not entirely fortuitous. 

3. M I G D A L - K A D A N O F F  A P P R O X I M A T I O N  

Calculation of fi via the Migdal-Kadanoff approximation suffers from 
the basic drawback that the low-temperature limit of the recursion 
relations does not have property (11), but behaves as (12), thus giving 

2 
fz 
K 

0.5 1.0 1.5 Z.0 2.5 3.0 
I / K  

Fig, 5. Interfacial free energy for the RG Migdal-Kadanoff approximation. ( - - )  The exact 
result~Xs); ( - - )  the result of the RG calcultion. 
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(o) 

K K 

K r 

Fig. 6. 

(b) 

K K d  

. . . . . .  l 

Kd r 

Clusters 2 x 4 for (a) bulk and (b) defect in the finite-cluster approximation, 

erroneous T ~ 0 limiting behavior  of the interracial free energy (13). This is 
clearly visible in Fig. 5, where we have shown results of our Migda l -  
Kadanoff  calculation for b = 2. This feature was noted earlier by Oliveira et  

a/., (]3) who performed the Kadanoff  lower-bound approximation.  The 
explanation for this behavior  in our  Migda l -Kadanof f  calculation is simple. 
This approximat ion  is ultimately a reduction of the problem to ld  
decimation and such a procedure picks up a In b entropic term of the ld  
Ising model. 

(al 

Fig. 7. 

(b) 

K 

K ~ j F  ' 

I 
L 
i 

i 
i J 

I 

Clusters 4 x 4 for (a) bulk and (b) defect in the finite-cluster approximation. 
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i 
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Fig. 8. Interfacial free energy for 2 x 4 cluster approximation and majority rule projection 
operator. ( - - )  The exact resultt18); ( . - )  the result of the RG calculation. 

4 .  F I N I T E - C L U S T E R  A P P R O X I M A T I O N  

This kind of approximation was earlier used for calculation of bulk (6) 
and surface (17) free energies. Our 4 x 4 cluster approach is intended as a 
complementary calculation of f~. We have used clusters 2 x 4 and 4 x 4, 
shown in Figs. 6 and 7. For  the 2 x 4 cluster the situation is simple, since 
the subspace of interactions is closed under repeated RG applications. 
However, in this case, one again encounters the problem of erroneous low- 
temperature asymptotic behavior (Fig. 8). This can be remedied by a dif- 

2 I ] f I i 

K " 

0 ~ I I \ \ ~  I 
0.5 1.0 1.5 2.0 2.5 

I/K 

Fig. 9. Interfacial free energy for 2 x 4  cluster approximation and M1 projection operator 
(see text). ( - - )  The exact result(18); ( - - )  the result of the RG calculation. 

822/46/'3-4-23 
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2 
f~ 

1 -  

0 
0 

I I I I 

L E 
0.5 1.0 1.5 2~0 I /K 2,5 

Fig. 10. Interfacial free energy for 4 x 4 cluster approximation with majority rule projection 
operator and c~= 1.217 (see text). ( - - )  The exact result~18); ( - . - )  the result of the RG 
calculation. 

ferent choice of projection rule (called rule M1(26)) .  The resulting free 
energy is shown in Fig. 9. Finally, the 4 x 4 cluster calculation is performed 
with free boundary conditions and by the use of the Ursell cluster 
expansion. (17) In this case, however, one generates interactions beyond 
nearest neighbors (diagonal and four-spin interactions). It is reasonable to 
expect that the 4 x 4 cluster should be best suited for calculation on planar, 
square lattice, since it reflects the geometry of the lattice. We have encoun- 
tered difficulties with generated diagonal interactions D. How is one to 
include them in the interfacial free energy (10)? We do not have a definitive 
answer to this question. One obvious choice is to write 

f i =  lim [(-2K("I-c~Dlnl)/2 n] (15) 
n ~ o o  

instead of (10), where c~ is a variable parameter chosen in such a way that 
the low-temperature behavior (5) of f~ is preserved. We have numerically 
determined c~ = 1.217. With such a choice of ~ our results agree quite well 
with the exact f,.. This is shown in Fig. 10. In this calcultion it seems essen- 
tial to match T =  0 and T =  T~ behavior correctly in order to obtain good 
results over the whole temperature interval. 

5. CONCLUSIONS 

In conclusion, we have studied various position-space RG 
approximations to the calculation of interracial free energies. Our study 
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indicates that with little effort one can obtain quite quantitative results for 
J), both in the critical and noncritical region. We hope that our conclusions 
regarding this kind of calculation, and in particular the general discussion 
at the beginning of this article, should also be applicable to 3d models. 
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